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Problem Set 6

How much firepower do context-free languages have?  What are their  limits?  And just how 
awesome are PDAs?  In this problem set, you'll get to find out!

Start this problem set early.  It contains seven problems (plus one survey question and one extra 
credit problems), several of which require a fair amount of thought.  I would suggest reading 
through this problem set at least once as soon as you get it to get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually.  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

If you are asked to prove something by induction, you may use weak induction, strong induction, 
the well-ordering principle,  structural induction,  or well-founded induction.   In any case,  you 
should state your base case before you prove it, and should state what the inductive hypothesis is 
before you prove the inductive step.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 7% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so do be aware that the difficulty of the 
problems does increase over the course of this problem set.

Good luck, and have fun!

Due Friday, May 18th at 2:15 PM



Problem One: Designing CFGs (20 Points)

Below are a list of alphabets and languages over those alphabets.  For each language, design a context-
free grammar that generates that language.

i. For the alphabet Σ = { 0,  1,  2 }, write a CFG for the language L = { w |  w contains 00 as a 
substring }

ii. For the alphabet Σ = { 0, 1, 2 }, write a CFG for the language L = { w | w does not contain both 
0 and 1. }

iii. For the alphabet Σ = { 0, 1, 2 }, write a CFG for L = { 0i1j2k | i, j, k  ∈ℕ  (∧ i = j  ∨ i = k) }

iv. Suppose that you want to write a context-free grammar that describes function prototypes in C 
or C++.  Let Σ = { int, double, (, ), ",", name, ;}, where name is a symbol that represents 
the name of some function or variable.  Let L = { w | w is a valid function prototype }.  So, for 
example, the following would all be valid function prototypes:

int name();

double name(int name);

double name(double name, int name, double name);

Assuming that each argument to a function must have a name (though in C and C++ names are 
optional), write a CFG that generates L.  Functions may take any number of arguments.

 
Problem Two: Designing PDAs (20 Points)

Below  are  a  list  of  alphabets  and  languages  over  those  alphabets.   For  each  language,  design  a 
pushdown automaton that recognizes the given language.

To specify your PDA, you may use a state-transition diagram (as done in lecture), a transition table (as 
found in Sipser), or a seven-tuple.  You may use either the style of PDA covered in lecture (where the 
stack begins with an explicit start symbol and transitions may push strings of characters atop the stack), 
or the type covered in Sipser (which lacks these features).

i. Let Σ = { 1, ≥ } and let GE = { 1m ≥ 1n | m, n  ∈   ℕ∧ m ≥ n }.  That is, GE consists of strings of 
two numbers written in unary and separated by a ≥ character, where the first unary number is at 
least as large as the second unary number.  In lecture, we saw a nondeterministic PDA for GE. 
Now, construct a  deterministic PDA for  GE (recall that a DPDA is a PDA in which for any 
combination of a state, input symbol, and stack symbol there is at most one transition that can 
be followed, including ε-transitions).

ii. Let Σ = { 0, 1 } and let THIRD = { 0n13n | n  ∈ℕ }.  Design a (possibly nondeterministic) PDA 
that accepts THIRD.

iii. Let Σ = { 0,  1 } and let  THRICE = {  03n1n |  n  ∈ ℕ }.  Design a (possibly nondeterministic) 
PDA that accepts THRICE. 



Problem Three: The Complexity of Addition (12 Points)

On the previous problem set, we began addressing the question

How hard is it to add two numbers?

We will now directly answer that question.  Consider the language ADD = {1m+1n=1m + n | m, n ∈ ℕ } 
over the alphabet { 1, + , = }.  That is, ADD consists of strings encoding two unary numbers and their 
sum.  As you proved on the previous problem set, ADD is not regular.

i. Write a context-free grammar for ADD.  This proves that ADD is context-free.

ii. Design a deterministic PDA that recognizes ADD (recall that a DPDA is a PDA in which for 
any combination of a state, input symbol, and stack symbol there is at most one transition that 
can be followed,  including ε-transitions).   This proves that  ADD is  not only a  context-free 
language, but also a deterministic context-free language.

Problem Four: The Complexity of Pet Ownership (16 Points)

On the previous problem set, you designed a DFA for taking your dog on a walk with a leash.  In this 
problem, you will see what happens when you take off your dog's leash.

Let Σ = { Y, D }, where Y represents you moving one unit forward and D represents your dog moving 
one step forward.  Then a string of  Ys and  Ds represents you and your dog going for a walk.  For 
example, in the string  YYDY, you end up two steps ahead of your dog, while in the string  DDDDYY, 
your dog takes off and ends up two steps ahead of you (perhaps there was some other dog it wanted to 
meet).

If we consider the language of strings representing walks where you and your dog end up at the same 
location, we get the language DOGWALK = { w | w has the same number of Ys and Ds }.

i. Write  a  context-free  grammar  that  generates  DOGWALK.   This  proves  that  DOGWALK  is 
context-free.

ii. Design a deterministic PDA that recognizes DOGWALK.  This proves that DOGWALK is not 
only a context-free language, but also as deterministic context-free language.

Problem Five: The Complexity of Exponentiation (12 Points)

On the previous problem set, we began addressing the question

How hard is it to check whether a number is a perfect power of two?

A number is a power of two if it can be written as 2n for some natural number n.  Consider the language 

POWER2 = { 12 n

| n  ∈ ℕ } over the simple alphabet Σ = { 1 }.  That is, L contains all strings whose 

lengths are a power of two.  For example, the smallest strings in L are 1, 11, 1111, and 11111111.

On the previous problem set, you proved that  POWER2 is not regular using the pumping lemma for 
regular languages.  Now, using the pumping lemma for context-free languages, prove that it is not 
context-free either.  (Hint: As with last time, you may want to use the fact that n < 2n for all n  ∈ℕ)



Problem Six: The Complexity of String Searching (24 Points)

On the previous problem set, we began addressing the question

How hard is it to search a string for a substring?

Given a string to search for (called the pattern) and a string in which the search should be conducted 
(called the  text), we want to determine whether the pattern appears in the text.  To encode this as a 
language problem, we let Σ = {0,  1,  ?} and encoded questions of the form “does pattern string  p 
appear in text t” as the string p?t.  For example:

“Does 0110 appear in 1110110 ?” would be encoded as 0110?1110110

“Does 11 appear in 0001 ?” would be encoded as 11?0001

“Does ε appear in 1100 ?” would be encoded as ?1100

Let the language SEARCH = { p?t | p, t  {∈ 0, 1}* and p is a substring of t }.  On the last problem set, 
you proved that SEARCH is not regular using the pumping lemma for regular languages.  Now, using 
the pumping lemma for context-free languages, prove that SEARCH is not context-free either.

As a hint, the pattern and text string you show cannot be pumped must use both 0s and 1s.  In fact, if 
you restrict the pattern and text strings to strings consisting solely of 0s, you get the language 

LE = { 0n?0m | n, m    ∈ℕ∧ n ≤ m }

which is context-free.

Problem Seven: Uncertainty about Ambiguity (16 Points)

In this question, you'll explore some of the properties of ambiguous grammars.  To begin with, consider 
the language

GE' = { 0n1m | n ≥ m }

Here is one possible context-free grammar for GE':

S → 0S | 0S1 | ε

You may want to play around with this grammar a bit before answering these questions.

i. Show that this grammar is ambiguous by providing a string in GE' and two different parse trees 
for that string.

ii. Rewrite this grammar so that it is unambiguous.  Explain, but do not formally prove, why your 
new grammar is unambiguous.

iii. Prove or disprove: If a grammar G is ambiguous, then there is no DPDA that accepts ℒ(G).



Problem Eight: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about 
how we're doing.

i. How hard did you find this problem set?  How long did it take you to finish?

ii. Does that seem unreasonably difficult or time-consuming for a five-unit class?

iii. Did you attend Monday's problem session?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance 
labeled “Stanford Engineering Venture Fund Laboratories.”  There will  be a clearly-labeled 
filing cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-spr1112-submissions@lists.stanford.edu)  with  the  string  “[PS6]”  somewhere  in  the 
subject line.  If you do submit electronically, please submit your assignment as a single PDF if  
at all possible.  Sending multiple image files makes it much harder to print out and grade your 
submission.

If you are an SCPD student, we would strongly prefer that you submit solutions via email.  Please 
contact us if this will be a problem.

Extra Credit Problem: Palindromes are Nondeterministic (5 Points Extra Credit)

In lecture we mentioned that the language L = { w | w is a palindrome } over the alphabet Σ = { 0, 1 } 
is context-free, but not  deterministic context-free.  That is, there is an NPDA that recognizes L, but 
there is no DPDA that recognizes L.  Formally prove this result.
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